Exercise 64

Kinetic energy The kinetic energy K of a mass is proportional to the square of its velocity v. If $K=12,960$ joules when $v=18 \mathrm{~m} / \mathrm{sec}$, what is K when $v=10 \mathrm{~m} / \mathrm{sec}$?

Solution

The kinetic energy is proportional to the square of its velocity:

$$
K \propto v^{2}
$$

Make this proportionality an equation we can use by introducing a proportionality constant A.

$$
\begin{equation*}
K=A v^{2} \tag{1}
\end{equation*}
$$

Use the fact that $K=12,960$ joules when $v=18 \mathrm{~m} / \mathrm{sec}$ to determine A.

$$
\begin{gathered}
12,960=A(18)^{2} \\
\frac{12,960}{18^{2}}=A \\
A=40
\end{gathered}
$$

Equation (1) then becomes

$$
K=40 v^{2} .
$$

Therefore, when $v=10 \mathrm{~m} / \mathrm{sec}$,

$$
\begin{aligned}
K & =40(10)^{2} \\
& =40(100) \\
& =4,000 \text { joules } .
\end{aligned}
$$

